3D打印,也称为增材制造(Additive Manufacturing,AM),是一个从三维模型数据出发,将材料逐层堆积制造物体的过程,而不是传统的减法制造方法[1]。这种无需原胚和模具的制造方法可以给行业带来新的设计灵活性,减少能源使用和缩短上市时间[2]。增材制造的主要应用包括快速成形、快速模具、直接零件生产及塑料、金属、陶瓷和复合材料的零件修复[3]。近年来,电子计算能力、材料和建模科学的进步以及 AM 技术所带来的优势,使 AM 从快速成型转向直接制造金属零件[4]。任何金属的AM工艺都有两个主要参数,分别是原料输入和用于形成零件的能源[5]。输入的原材料可以是金属粉末或丝,而电子束或激光/电弧可作为能量源,如图 1所示。AM 机器需要将 CAD模型转换为.stl(stereo lithography)格式的文件,然后用专用切片软件将该模型切成多个横截面层,AM机器将逐一构建这些横截面层,形成一个完整的零件[6]。这些层的厚度取决于制造给定零件的原材料类型和AM工艺。
图1 一般金属增材制造工艺
Fig.1 Common metal additive manufacturing process
1、金属3D打印技术分类及成形特点
金属AM工艺可大致分为两个主要大类:粉末床熔合技术(Powder bed fusion,PBF)[7-8]和定向能量沉积技术(Directed energy deposition,DED)[9]。这两种技术都可以根据所使用的能源类型进一步分类。在PBF技术中,热能选择性地熔化粉末层区域。PBF技术的主要代表性工艺有:选择性激光烧结(Selective Laser Sintering,SLS)、选择性激光熔化成形(Selective Laser Melting,SLM)、直接金属激光烧结(Direct Metal Laser Sintering,DMLS)和电子束熔化成形(Electron beam melting,EBM)。在DED技术中,通过使用聚焦的热能来熔化材料(粉末或丝状)而沉积。一些常用的DED技术包括激光工程化净成形(Laser engineered net shaping,LENS)、直接金属沉积(Direct metal deposition,DMD)、电子束自由成形制造(Electron beam free form fabrication,EBFFF)和电弧增材制造。本文主要介绍了 SLS、SLM、DMLS、EBM和LENS金属3D打印技术的基本原理、特点及其应用。