增材制造路线图:迈向智能化和工业化
来源:机械工程学报 | 作者:bjmi | 发布时间: 2022-04-25 | 1061 次浏览 | 分享到:

5、创建一个包含机械、统计和控制建模的数字双胞胎,以智能和经济有效的方式认证增材制造产品。


基于先进设备和数字生态系统的增材框架

未来方向

1、开发多机器人协作下的混合增材制造解决方案。以敏捷制造为核心的混合制造结合了各种加工技术的优点,在多材料、多结构和多功能制造方面显示出良好的前景。

2、提高监控和传感设备的功能和集成度。调幅过程中的信号处理涉及视觉、光谱、声学和热学。多功能单一装置将显著提高监测和传感装置在工业中的普及性;同时,通过与数据预处理软件的耦合,将提高物理建模、过程优化和闭环控制中的数据可用性。

3、将工业互联网融合成增材制造数字孪生。工业互联网可以解决数字孪生的核心问题——模型和数据,从而通过云平台共享和分析数据和模型。

4、完善增材数字生态系统。集成先进设备或技术,如过程监控、信息感知、机器学习、人工智能、数据库等。


工艺和设备未来行动项

增材制造智能结构

发展现状

1、增材制造已经用于战略性地集成传感、驱动、计算和通信功能。比如纤维增强复合材料的3D打印使得分层和中空结构的集成制造具有重量轻、强度高和成本低的优点。

2、超材料。非常规的机械、光学、声学或热性能。

3、形状记忆聚合物、液晶弹性体、水凝胶先进材料。如传输或处理信息的新型3D打印电子设备、基于电气组件的具有感测能力的结构、监测心脏组织收缩的组织培养装置、对环境刺激具有动态响应的智能设备。


具有各种功能的智能结构:(a)具有热收缩性能的人造皮肤;(b)金属墨水直接书写和电子元件的取放相结合的平台;(c)导电和功能材料的电荷编程调幅;(d)可变形结构的4D打印。

未来方向

1、融合不同的物理场和n维(nd)打印,用于复杂的多尺度结构,基于传感和驱动能力的有效组合对刺激做出动态响应。

2、更多独特功能的材料。智能增材制造工艺和设备来精确地制造这些材料的多材料结构。

3、在极端条件下的多物理领域中具有鲁棒性和适应性。因此,在结构设计之初,就应该考虑各种不同的工作条件,集成在线诊断、柔性控制、全生命周期设计和自动原型制造的智能系统。


智能结构的挑战

增材制造生物结构

发展现状

1、不涉及细胞的3D打印假体和生物可降解支架。

2、活细胞3D打印结构,可以被植入以修复/替换人体中的缺陷组织/器官。

3、导电生物材料和聚合物已经被开发出来,响应物理、化学和生物刺激。各种生物打印工艺也在不断发展,如嵌入式打印技术直接将软细胞外基质和细胞沉积在支持缓冲液中,基于光聚合的增材制造技术实现水凝胶储器快速打印,精确的单细胞打印等等。