用于精密玻璃成形的微纳结构模具制造技术综述
来源:极端制造国际期刊 | 作者:周天丰、贺裕鹏、王添星、朱展辰、许汝真、于谦、赵斌、赵文祥、刘朋、王西彬 | 发布时间: 2022-01-27 | 921 次浏览 | 分享到:


图2(a)模压成形装备PFLF7-60A照片及 (b) 模压成形过程示意图。

03最新进展

微纳结构模具制造技术的最新进展主要包含:新型模具材料开发、非机械制造方法、机械制造方法、模具服役性能。在每个部分中,作者依次讨论了其技术原理、分类和最新进展。除此之外特别讨论了各种技术加工的典型微纳结构以及制造能力和范围。

模具材料

为抑制高温变形引起的成形误差,应选择热膨胀系数小、耐高温的模具材料。用于玻璃成形的材料必须具有以下特点:(1)高温下硬度和强度高,热膨胀系数低,高温下化学性能稳定性好;(2)材料一致性好,可以加工成光学级表面要求;(3)惰性粘附和与玻璃反应。常见的模具材料主要是单晶硅、碳化硅、硬质合金等超硬难加工材料,图3展示了新型的石墨烯-磷化镍 (G-Ni-P) 复合模具材料。


图3(a) 新型的石墨烯-磷化镍 (G-Ni-P) 复合模具材料;(b) G-Ni-P与Ni-P的机械性能对比。

非机械方法制造微纳结构模具

非机械方法制造微纳结构主要是指利用化学、飞秒激光及微电火花等刻蚀技术在模具表面去除材料形成微纳单元阵列。图4展示了单点车削与离子束(IBE)刻蚀相结合制备的6H-SiC微透镜模具。图5为利用化学腐蚀辅助飞秒激光在硅表面制备的纳米线结构。


图4微切削-离子束刻蚀微透镜阵列模具。(a) 微透镜阵列;(b) IBE刻蚀后的微透镜形貌。


图5化学腐蚀辅助飞秒激光制备的纳米线。

机械方法制造微纳结构模具

非机械加工能够实现具有特定性能材料表面的微纳尺度的结构加工,但很难对微纳结构的几何形貌进行变化和控制。相反,机械加工的方法能够适应更多种类的材料,并且能够实现更高质量的微纳结构加工和形貌灵活控制。机械方法加工微纳结构主要有:慢刀伺服(STS)、快刀伺服(FTS)、微纳铣削、飞切加工、微磨削和超精密研磨技术。图6展示了一种将超声振动、进给运动和旋转运动相结合的旋转超声振动(RUT)加工技术以及制造的微纳结构。图7展示了轴向进给飞切加工微纳沟槽原理图以及低频振动辅助轴向进给飞切加工两级结构的原理图。图8为3D曲面上微透镜阵列的研磨过程。


图6(a) 旋转超声加工技术及 (b) 在表面生成的微纳结构。


图7(a) 轴向进给飞切加工(ARFC)微纳沟槽与 (b) 低频振动辅助轴向进给飞切加工两级结构的原理图。


图83D微透镜阵列研磨过程。(a) 将研磨球粘在支架上的孔中并滚动以研磨弯曲基板上的微腔;(b) 在曲面上产生一个微透镜。

微纳模具服役性能